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Switzerland

4 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland,
D-97074 Würzburg, Germany

Abstract. Massive structures like clusters of galaxies, embedded in cosmic filaments, re-
lease enormous amounts of energy through their interactions. These events are associated
with the production of Mpc-scale shocks and injection of considerable amounts of turbu-
lence, affecting the non-thermal energy budget of the ICM. In order to study this thor-
oughly, we performed a set of cosmological simulations using the hydrodynamical code
Enzo. We studied the formation of clusters undergoing major mergers, the propagation of
merger shocks and their interaction with the filamentary cosmic web. This interaction is
shown to produce peripheral structures remarkably similar to giant radio relics observed,
for example, in Abell 3376 and Abell 3667. We find a relatively long timescale (about 4
Gyr) for turbulence decay in the centre of major merging clusters. This timescale is sub-
stantially longer than typically assumed in the turbulent re-acceleration models, invoked for
explaining the statistics of observed radio halos.

Key words. Hydrodynamics – Methods: numerical – Galaxies: clusters: general – Shock
waves – Turbulence

1. Introduction

Virialised cosmic structures are embedded in
a web-like filamentary network, where clusters
form at the junction of those filaments (Bond et
al. 1996; Doroshkevich et al. 1996). In the hier-
archical structure formation framework, clus-
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ters are the largest objects in the universe that
may have attained virialisation recently, and at
present many clusters are still in the process of
growing by accretion and mergers.

In a major merger (the case when the mass
ratio of the precursors approaches unity), the
sudden increase in bulk motion of ICM pro-
duces Mpc-scale shock fronts and stirs the
ICM creating large-scale turbulent eddies, with
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sizes up to several hundred kiloparsecs (Ricker
et al. 2001). Merger shocks are thus par-
ticularly interesting for transforming thermal
to kinetic energy, by injection of volume-
filling turbulence in the ICM (Subramanian
et al. 2006). Strong collisionless shocks are
also capable of producing high-energy cosmic-
ray particles (CR) via diffusive shock accel-
eration mechanism (DSA; Blandford et al.
1987). Turbulence can also stochastically re-
accelerate the ambient electrons (Brunetti et al.
2007) and amplify magnetic fields by shock

compression and dynamo action.
In the last years, numerical simulations of

idealised halo mergers were often performed
(e.g., Heinz et al. 2003; Asai et al. 2004;
Xiang et al. 2007). Clearly, hydrodynamical
simulations of cluster evolution in a cosmolog-
ical framework are somehow complementary
to the above cited approach, and provide the
final testbed for the idealised studies and the
necessary link to the observations.

In a recent work (Paul et al. 2011) we sim-
ulated several major merger events in a non-
artificial setup with the hydrodynamical code
Enzo (O’Shea et al. 2005). Our aim was to ac-
count for the shock propagation geometry, the
effect of the propagation of merger shocks and
their role in injecting turbulence in the ICM
and especially in the cluster core. We present
in the following the main results of that work.

2. Simulations of cluster mergers

Our simulations were performed with the
Adaptive Mesh Refinement (AMR), grid-based
hybrid (N-body plus hydrodynamical) code
Enzo v. 1.0 (O’Shea et al. 2005). For the sim-
ulation details, we refer the reader to Paul et al.
(2011).

We focus our study on merger events oc-
curred between 0.25 < z < 0.7 and halos with
mass M > 1013 M� at the time of merger. We
chose only major mergers (merging mass ratio
larger than 0.5). The final sample consists of
seven mergers, spanning different mass ratios,
merger redshifts, and total cluster masses (Paul
et al. 2011).

Fig. 1. The evolution of a major merger is shown
in slices. The redshift is indicated at the lower left of
each panel, and an identification letter is at the lower
right. Each panel has a size of 7.7×7.7 Mpc h−1. The
baryon density and vorticity are contoured in white
and black respectively, and temperature is colour
coded.

2.1. Evolution of merger shocks

The morphological evolution of one of our
clusters is shown in a map combining baryon
density, temperature and vorticity (Fig. 1). In
the case shown here, the two sub-clumps ap-
proach each other with a relative velocity of
980 km s−1, collide for the first time at z ' 0.3
and then pass through a core oscillation phase
before getting relaxed around z = 0.

The evolution of the baryonic component
is the most prominent effect during a clus-
ter merger. The gas in the ICM is severely
attracted in the forming potential well, even-
tually generating a shock wave which propa-
gates through the intra-cluster gas of the newly
formed cluster. Gravitational and kinetic en-
ergy released in a merger event is thus dissi-
pated into the ICM along with the evolution
of shocks. This important feature of mergers is
followed in Fig. 1. The temperature increase is
first driven by compression at the centre of the
forming cluster (Fig 1a), and subsequently the
shock is launched and propagates outwards.

The shape of the emerging shock depends
on the mass of the merging clumps and on
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the geometry of the merger. In the case of
Fig. 1, the shock front has a roughly ellipsoidal
shape, with the arcs more pronounced along
the merger axis. As this shock propagates out
of the ICM of the newly formed cluster, it in-
teracts with the surrounding filaments. The in-
teraction with the web-like cosmic structure
causes the breaking of the merger shock in sep-
arate sections, as clearly visible by comparing
the temperature, density and vorticity shown in
the bottom row of Fig. 1. This interesting fea-
ture is obviously not modeled so far in simu-
lations of idealised mergers (e.g. Ricker et al.
2001; Ritchie et al. 2002), where symmet-

ric bow-like shocks propagates unimpeded out-
wards.

2.2. Injection and evolution of turbulence

Velocity fluctuations are a distinctive feature
of turbulent flows. It is therefore straightfor-
ward to relate the generation of turbulence with
the vorticity of the flow, and to use this vari-
able as a turbulence diagnostic in our analy-
sis. In our reference run, vorticity is produced
after the merger, just behind the shock, and
propagates along with it. Some level of vor-
ticity is also associated to both clumps before
merging (Fig. 1a) and also to the centre of the
newly formed cluster (Fig. 1d). A simple vi-
sual inspection of Fig. 1 thus suggest that ma-
jor mergers stir the ICM effectively, resulting
in a very volume-filling production of turbu-
lence.

An interesting by-product of shock prop-
agation, highlighted in Fig. 2, is the interac-
tion between merger shocks and filaments. It
is already known that the warm-hot baryons
flowing along the filaments results in a tur-
bulent flow, when it mixes with the cluster
gas (Nagai et al. 2003; Maier et al. 2009).
Here, as an additional effect, we can see that
a substantial level of vorticity is generated in
the regions past the merger shock and sur-
rounding filaments. In Fig. 2 such ‘collars’ can
be clearly observed at the interaction surface
of each filaments. The turbulence injection in
these zones is probably related to the shear-
ing (Kelvin-Helmholtz) instability between the
shocked gas moving outwards and the fila-

Fig. 2. Slice of 7 × 7 Mpc h−1, showing the vor-
ticity ω2 for our reference cluster at z = 0.05. The
vorticity is colour coded, whereas the density is rep-
resented as contours, in order to better highlight the
filaments surrounding the cluster.

ment gas flowing inwards. The level of vortic-
ity is much larger than the turbulence associ-
ated with the baroclinic generation at the fila-
ment accretion shock.

Observationally this feature can be related
to the broken radio arcs (radio relics) seen
in clusters like Abell 3376, Abell 3667 and
CIZA-J2242 (Bagchi et al. 2006; Rottgering
et al. 1997; Weeren et al. 2010). All these
relics are associated with one common interest-
ing feature i.e. the ’notch-like’ structure, where
the arc apparently bent inwards towards the
cluster centre. It is natural, in the framework of
the comparison with the simulations proposed
above, to relate this observed morphology with
the interaction of the merger shock with the fil-
aments.

2.3. Turbulence at the cluster centre

As for the turbulence at the cluster core, in
most of the clusters of our sample the turbu-
lent pressure support is about 20% of the total
pressure, after the merger. The ratio remains
larger than 10% on a timescale of 2 Gyr, and
above the threshold of a nearly relaxed clus-
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Fig. 3. The time evolution of the turbulence pres-
sure fraction in all studied clusters is here plotted.
The black line is used for a relaxed reference clus-
ter, the other ones indicate the merging clusters of
our sample. From Paul et al. (2011).

ter (around 5%) for about 4 Gyr (Fig. 3). This
timescale is a significant fraction of the cluster
history, and much longer than the shock propa-
gation timescale. A consequent and interesting
question would pertain to any observable im-
print that such event leaves on the cluster struc-
ture. A closely related issue concerns the bi-
modality in the correlation between radio and
X-ray luminosity of clusters showing a radio
halo, discussed by Brunetti et al. (2007) and
Brunetti et al. (2009). In the light of the tur-
bulent re-acceleration theory, this bimodality
was interpreted as originating from the short
timescale (of the order of 1 Gyr) of the tur-
bulence driving and decay. It is currently un-
clear how this acceleration scenario and the ob-
served bimodality could be reconciled with the
theoretical evidences of long turbulence decay
timescales. A possible explanation is to relate
the radio emission in halos only to the peak val-
ues of the turbulence evolution in cluster cores
(cf. Vazza et al. 2010).
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